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Introduction.-The familiar connection between the Brownian motion and the
differential operator f -> f"/2, based upon the fact that the Brownian transition
function (27rt)-1' exp[-(b - a)2/2t] is also the elementary solution of bu/bt =
(1/2)(2U/oa2, is. the simplest and most fruitful instance of the connection between
Markov processes with constant transition mechanism and linear parabolic equa-
tions. The purpose of this paper is to explain a similar connection between a wider
class of Markov processes and certain nonlinear parabolic equations. Boltzmann's
equation from statistical mechanics is a special case, as is Burgers' equation:
au/at = (1/2)2u/oa2 - ubu/ba.

1. Markov Processes with Constant Transition Mechanism.-Given a nice
topological space Q, let x: [0, o ) Q be a sample path with coordinates x(t)
x(t+) £ Q(t > 0), let Z be the associated universal field measuring x(t) for each
t > 0, and to each a E Q attach probabilities Pa(B), defined for B C Z, such that

(a) for each B E Z. Pa(B) is a (topological) Borel function of a,
(b) for each a C Q, Pa[X(0) C db] is the unit mass at b = a.

Pa(B) should be thought of as the chance of the event Bfor paths starting at a. Define
Pf(B) = fa P. (B)df for any nonnegative mass distribution f on Q of total mass + 1.
M = [Q,Z,P] is a Markov process with constant transition mechanism if the separate

motions Mf = [Q,Z,Pf] are knit together according to the rule

Pf[x EBIx(s):s < t] = Pa(B)

for each choice of f, t > 0 and B E Z. xt stands for the shifted path x(. + t),
a = x(t), and the identity is permitted to fail for a Pfnegligible class of paths.
Given t>02 define a map of mass distributions by the rule

e(tD*)f ---Pf [x (t) db ]

Because
Pa[X(t) C B] = fQ Pa[X() C db]Pb[x(t - s) E B] (t > s),

e(tD*) is multiplicative [e(tD*) = e(sD*)e((t - s)D*)], as the notation suggests,
and can be regarded as the (formal) exponential 2(tD*)n/n! of the (additive)
forward infinitesimal operator D* = l' t-I [e(tD*) - 1]. u = e(tD*)f is the (formal)
solution of the parabolic equation au/at = D*u with initial data f.

E. B. Dynkin2 gives a very good account of this whole development.
2. A Wider Class of Markov Processes.-Consider the setup of §1, modified as

follows: (1) to each mass distribution f on Q of total mass + 1 attach probabilities
P,(B), defined for B C Z, such that

(a) for each B E Z, Pf(B) is a Borel function of f,
(b) for eachf, Pf[x(O) C db] = f,

but do not suppose that Pf(B) = fQ Pa(B)df as in §1 [Pa(B) stands for Pf(B) in
case f is the unit mass at b = a]; (2) let each of the motions Mf = [Q,Z,Pf] be
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Markovian in the sense that for any t > s> 0 and B E Z, P,[x t E Blx(s): s < t]
depends upon a = x(t) alone, but do not suppose that it coincides with Pa(B) asin §1;
(3) instead of that, let

P,[x E£ B~x(s):s < t] = Pu[Blx(O) = a]
with a = x(t) and u = Pf[x(t) E db].

According to the customary nomenclature, M = [Q,Z,P] is a Markov process
with nonconstant transition mechanism, but of a very special class. Roughly
speaking, the transition mechanism depends upon t via the distribution u = Pf[x(t) C
db ], only. The map f -- u is still multiplicative, but now the infinitesimal operator
D*f = to t1[u - f] can be nonadditive, as will be illustrated below in actual ex-
amples. u is still a solution of bu/bt = D*u, but the exponential formula u =
e(tD*)f is not correct any more; a replacement will be indicated in §5.

3. A Simple Example: 2-State Maxwellian Gas.-Consider the space Q: 41,
take independent el, e2, etc. = 4 1 with common distribution f, and let n = n(t) be
the population of an independent standard branching process with n(O) = 1 and
distribution Pf[n(t) = j] = e-t(1 - e-')J-' (j . 1), subject to the rule that, con-
ditional on n(s) :s < ti, n(ti + t2) should be identical in law to the sum of n(t1)
independent copies of n(t2). Define Pf(B) to be the probabilities induced on the
space of sample paths x: [0, oo) -. Q by the recipe x(t) = ele2 ... en (t > 0).
M = [Q,Z,P] satisfies all the conditions of §2, and after a little computation, it

develops that

a-(el) =D *u(el) =u(-1)2 + U(+1)2 -U(+1) e1 = + 1

Dt 2u(-1)u(+ 1) - u(-1) el = -1
= f [u(el*)u(e2*) -u(el)u(e2) ]de2do.

u(e) is short for u(t,e), * stands for the collision:

el * e1e2 el1 = either or
e2 e2 e2 ele2

f de2 means sum over e2 = i1, and f do means sum over the two possible
outcomes of the collision e e*. bu/bt = D*u is expressed in this form to exhibit
its similarity to Boltzmann's equation, which also falls into the class described in §2;
see McKean5 and also the end of §5 for additional information on this subject.

4. Diffusions.-A simpler example is provided by the motion on Q = RI corre-
sponding to

au *U
1 a2U a

at = D 2u= 2 a2 - acu,
with

c = cl[u] = Ef[x(t)] -a =fR (b - a)udb.

[u now stands for the density function b P,[x(t) < b]. f is also regarded as a

density function; this will simplify the notation slightly.] A natural conjecture
is that this motion should be a standard Brownian motion subject to a drift = the
displacement from the average position, meaning by this a solution of

x(t) = x(0) + y(t) +fot [ave(xi) - xids
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with x(O) distributed according to f, y an independent standard Brownian motion,
and xi an independent copy of x, the average sign standing for the expectation over
xi. Because E,4x(t) ] = E,[x(O) I m, the problem simplifies to x = x(O) + y +
fo [m - xI, and it is easily verified that the solution

x(t) = e-lx(O) + (1 - e-t)m +fo e-(t8-)dy

satisfies all the conditions of §2. It is also easily verified that

Pa +00 (b
tAPL - e-'a - (1-e-t)M)2u= Pf[x(t)<bI=J [(1-e-2')]-112eXp[_( a-21- 'm2fda.

Now consider a more elaborate problem:

au_ 1 62 2
- D*u =

2 a C2U a CIU

with coefficients cl and c2 expressible as integrals

C = C[UI =fRn c(axbl. ..bbn)U. . .(u dbl ... dbn.
Guided by the above example, it is natural to conjecture that the underlying motion
is the solution of

x(t) = x(O) + fJo ave[c2(xxi .. .,x )]dy + fot ave [c,(x,x,, ..,x) Ids
with x(O) distributed according to f, and y an independent standard Brownian
motion; xi, etc., being independent copies of x; and the average sign standing for
the expectation over these copies. This recipe is easily checked if the integrands
c(a, b,, etc.) belong to C'(Rn+l).

Burgers' equation
au * 1a2u au__-Du - - - u
at = D tb=2aa2 ba

corresponds to the case c2 = 1, cl = u(a)/2. J. Cole' expressed the solution as

/ Pa \ r+c e-(b-a) 2/2t / b
ep tJ =

- e/7: xp fJdb)
The underlying motion is the solution of

x(t) = x(O) + y(t) + 2 f u[s,x(s)]ds = x(O) + y(t) + ave(t),

t being the local time

t = "J (4)-1 measure (s < t: jx1(s)-x(s)I < e)
that x spends in coincidence with an independent copy xi before time t.

5. Tagged Molecule in a Bath of Like Molecules.-A process M of the class
described in §2 can be pictured as the motion of a tagged molecule in a bath of
infinitely many like molecules; the first instance of such a model is due to Kac.4

Consider n < co like molecules performing a joint Markovian motion with con-
stant transition mechanism on the n-fold product Qn of Q and let the corresponding
(additive) backward infinitesimal operator be
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Dn E D(i) + ()l E D(ij)i <n i<j en
+ 2 D(ijk) + ... + D(12. ..n).i<j<k <n

[A backward operator D is the dual of a forward infinitesimal operator D* as de-
scribed in §1.] D(1) is an (additive) 1-molecule backward infinitesimal operator
acting on the first coordinate of Qn. D(i) is a copy of D(1) acting on the ith
coordinate (i < n). D(12) = D(21) is a 2-molecule operator acting on the pair of
coordinates 12. D(ij) is a copy of D(12) acting on the pair ij (i < j < n), etc.
D(1) governs the motion of molecule number 1 in isolation, D(12) governs the
interaction (double collisions) between molecules 1 and 2, D(123) the (triple)
collisions between molecules 1, 2, 3, etc. Dn* commutes with permutations of the
coordinates so that if the initial n-molecule distribution fn is symmetrical, then so is
v = e(tDn*)fn at any later time.
Given a 1-molecule distribution function f, let fn be the outer product f .... Of

so that the molecules are independent at time t = 0 with common distribution f.
A formal computation indicates that as n t c, v = e(tDn*)fn tends to the infinite
outer product u' = u0u0, etc., of the 1-molecule distribution function u =
Lim P [x(t) E db]. Kac,4 describing the first known instance of this phe-
nomenon, called it the propagation of chaos. u is the (formal) solution of bu/Wt =
D*u, D* being the dual of the (additive) map D = D(1) + D(12) + D(123) + etc.
applied to the infinite outer productf' = fOf0, etc., i.e.,

fBQ D*f~p = , f*Q. fX . .. 3fD(12 ... n) up.n=1
D is now extended to nice sums of tame functions on Q' so as to be a derivation

under the outer product of such functions, and with this extension, it develops that

(ncatn U- pu = u)...)uD 'p (n > 0),t SQ 5n +

which suggests the (formal) exponential sum

=,i=E f+ f0... Of D = 'e(tD) p
Q n=o nt n"+i

and leads us to express the solution of au/at = D*u as

u = e(tD)*f .

A more elaborate (formal) computation gives the rule

mo Pf [xz(ti) E B1, x1(t, + t2) E B2, x1(t1 + t2 + t3) & B3, etc.]
= fQa f e (t1D) soie(t2D) p02e(t3D) p3, etc.,

Spj being the indicator function of B1 c Q, etc. Using this, it is easy to convince
oneself that the motion of the (tagged) molecule number 1 satisfies all the condi-
tions of §2.
Going backwards, if M is one of the motions of §2 and if its infinitesimal operator
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D* is expressible as the dual of D = D(1) + D(12) + etc. applied to f' as above,
then M can be regarded as the motion of a tagged molecule in an infinite bath of like
molecules, formally at least.
McKean5 verified this recipe for the 2-state Maxwellian gas of §3, for a caricature

of a Maxwellian gas proposed by Kac,4 for a 3-dimensional Maxwellian gas with
cutoff, and for a caricature of Burgers' equation. It is an open problem to sub-
stantiate it for a gas of hard balls, though the fact cannot be doubted. D. P.
Johnson3 has carried out the verification for the 2-state case [±1] under the con-
dition that D*f(+ 1) is a real analytic function of f(+ 1).

6. Increase of Chaos.-A very seductive conjecture is that chaos increases in
the infinite gas. This means that if the initial co-molecule distribution is sym-
metrical but not chaotic [i.e., not an outer productf' = fOf®, etc. ], it becomes
more nearly so as time passes. A symmetrical initial distribution can be expressed
as an average of chaotic distributions f', and granting that chaos propagates as in
§5, the O -molecule distribution at time t > 0 will be the same average of u =
u0uQ, etc. [u = e(tD) *fI]. Now the expression

H = lim 1 ave[uf] lg ave [u ] = ave [f Ulg u
n Qn [ave u]n ave u

is <0 and vanishes only in the chaotic case. As such, it can be thought of the
degree of nonindependence of the molecules (lack of chaos), and it is natural to
believe that H should increase with time. H. Kesten [private communication]
disproved this, so the problem is to find a pleasing definition of the degree of chaos
that permits this conjecture to hold.

7. A Conjecture about Parabolic Equations.-Guided by the model of §5, it is
clear that the motion underlying bu/6t = a'u2f+'/6a2 involves meetings at the
same place of n + 1 molecules. Because three or more standard Brownian particles
cannot meet, it is conjectured that solutions with general nonnegative initial data
do not exist if n > 2. It is likewise conjectured that bu/bt = 62u/ba2 -bUn+/ba
does not have good solutions for n > 2.

8. Conclusion.-A wide class of statistical mechanical transport problems can
be expressed as bu/?t = D*u. Because of the connection with the underlying
motion via the formula u = Pf[x(t) £ db], a new field of application of proba-
bilistic methods is opened up. The model of a tagged molecule in an infinite
bath of like molecules not only permits us to give an explicit formula for the solution
[u = e(tD) *fW], but in simple cases can actually clarify the statistical-mechanical
problem.
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